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A B S T R A C T   

The development of devices capable of generating three-dimensional (3D) point clouds of the forest is flourishing 
in recent years. It is possible to generate relatively dense and accurate 3D data not only by terrestrial laser 
scanning but also mobile laser scanning, personal laser scanning (hand-held or in a backpack), photogrammetry, 
or even using smart devices with Time-of-Flight sensors. Each of the mentioned devices has their limits of us-
ability, and different method to capture and generate 3D point clouds needs to be applied. Therefore, the 
objective of our experiment was to compare the performance of low-cost technologies capable of generating 
point clouds and their accuracy of tree detection and diameter at breast height estimation. We tested a multi- 
camera prototype (MultiCam) for terrestrial mobile photogrammetry constructed by authors. This device is 
capable of capturing images from four cameras simultaneously and with exact synchronization during mobile 
data acquisition. Secondly, we have designed and conducted a data collection with iPad Pro 2020 using the new 
built-in LiDAR sensor. Then we have used mobile scanning approach applied a hand-held personal laser scanning 
(PLShh) using GeoSlam Horizon scanner. Moreover, we have used terrestrial laser scanning (TLS) using FARO 
Focus s70. With all mentioned devices, we have focused on individual tree detection and diameter at breast 
height measurements by cylinder-based algorithm across eight test sites with dimensions 25x25 m. Altogether, 
301 trees were located on test sites, and 268 were considered for the analysis and comparisons (DBH > 7 cm). 
TLS provided the most accurate and reliable data. Across all test sites, we achieved the highest accuracy (rRMSE 
ranged from 3.7% to 6.4%) and tree detection rate (90.6–100%). When we have considered only trees with DBH 
higher than 20 cm, the tree detection rate was 100% across all test sites (altogether 159 trees). When the 
threshold of trees considered in the evaluation was changed to 10 cm and then to 20 cm (from 7 cm), the ac-
curacy (rRMSE) and tree detection rate increased for all devices significantly. Results achieved (DBH > 7 cm) by 
iPad Pro were closest to TLS results. The rRMSE ranged across test sites from 8.6% to 12.9% and tree detection 
64.5% to 87.5%. PLShh and MultiCam, the rRMSE ranged from 13.1% to 24.9% and 14% to 38.2%, respectively. 
The tree detection rate ranged from 55.6% to 75% and 57.1% to 71.9%, respectively. The time needed to conduct 
data collection on a test site was fastest using MultiCam (approx. 8 min) and slowest using TLS (approx. 40 min).  
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Mokroš). 
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1. Introduction 

The development of new measurement techniques (e.g., laser scan-
ning, or LIDAR) and the increasement of computational power of per-
sonal and mobile devices have in the last two decades changed the 
traditional inventory of forest properties and structures (Liang et al., 
2016). New techniques provide new possibilities for users to take the 
forest to the laboratory and evaluate the needed characteristics in post- 
processing, e.g., in three-dimensional (3D) spaces. This procedure 
widens the possibilities to investigate forest conditions compared with 
traditional measures (tree height, diameter at breast height (DBH), trunk 
position). 

3D data is useful in forest inventory and modelling applications, 
especially when combined with advanced visualisation techniques 
(Fabrika et al., 2018). However, the adoption of mentioned methods is 
limited by several constraints. Terrestrial laser scanners (TLS) are 
generally expensive and laborious in the field, although their spatial 
accuracy is very high (Liang et al., 2018a). The Structure-from-Motion 
(SfM) photogrammetry is easy to use from the user point of view, 
which relies on low-cost camera measurement equipment. The results 
are, however, highly dependent on the user’s experience and the data- 
acquirement methodology that is complicated under conditions of un-
structured environments, e.g. (Liang et al., 2015; Mokroš et al., 2018; 
Piermattei et al., 2019). 

These limitations inspired efforts to bring the technologies able to 
produce 3D point clouds in a ready-to-use manner. One of the directions 
is the development and deployment of mobile laser scanners (MLS) 
(Čerňava et al., 2019; Forsman et al., 2016b; Kukko et al., 2012; Liang 
et al., 2014, 2018b) and hand-held personal laser scanners (PLShh) 
(Balenović et al., 2021). This approach overcomes the static nature of 
terrestrial laser scanning (TLS) and mitigates occlusion effects. MLS and 
PLShh use Simultaneous Localization and Mapping (SLAM) (Durrant- 
Whyte and Bailey, 2006) to merge trajectories. The SLAM determines 
the “pose” of the device (position and orientation in a local coordinate 
system) at a particular moment using recognized features and simulta-
neously generates a map of the surroundings. The method can be con-
ducted in real-time, but the results can be often improved in post- 
processing. 

The methods of MLS and PLShh eliminated some limitations of TLS. 
On the other hand, MLS and PLShh typically have lower spatial accuracy, 
and many studies reported mismatches between different trajectories 
(Čerňava et al., 2019; Liang et al., 2018b). 

The next logical step to promote the wide use of 3D information in 
vast daily applications is to improve the sensor availability to average 
users. With this regard, the sensors using infrared light were adopted 
using two measurement principles: “structured light” and “time-of-flight 

(ToF)” (Sarbolandi et al., 2015), with the latter being more suitable also 
for outdoor measurements. Concepts of the 3D reconstruction using 
mentioned sensors were evaluated by Microsoft Kinect cameras (Hyyppä 
et al., 2018; McGlade et al., 2020; Wasenmüller and Stricker, 2017). In 
2014, Google announced the “Project Tango”, where the sensors were 
incorporated into mobile phones. The technology was based on three 
functionalities: depth perception (measuring of distances), motion 
tracking (using visual-inertial odometry) and area learning (recognition 
of already known features). The first two devices – a phone (codename 
Peanut) and a tablet (Yellowstone) were only available to developers. 
The first commercial device was the Lenovo Phab 2 Pro phablet, fol-
lowed by the Asus Zenfone AR. The support for the technology was 
stopped in March 2018, most probably due to negligible success in the 
main area of interest – augmented and virtual reality. However, the 3D 
reconstruction capabilities were evaluated by researchers in many areas, 
including cultural heritage (Boboc et al., 2019; Schöps et al., 2015), 
environment monitoring (Chudý et al., 2018) and others. Despite the 
short lifespan, forestry applications were reported mainly aiming at 
diameters and positions of trees (Fan et al., 2018; Hyyppä et al., 2018; 
Tomaštík et al., 2017). Currently, modified versions of ToF sensors are 
included in smartphones and tablets. In 2020, Apple announced its latest 
iPad Pro and iPhone 12 Pro/Pro Max, which integrated such a sensor. 
Following these recent technical progresses, it can be foreseen that there 
will be more and more low-cost solutions coming into professional and 
consumer market in the near future. 3D information of the environment 
will be easier to be collected, but the applicability of such acquired 3D 
information is still unclear. In this study, we compared four solutions 
and their performance in the capturing 3D point clouds within a forest 
environment, i.e., a professional TLS, a state-of-the-art PLShh, a 
consumer-level mobile scanning using iPad Pro 2020 with a LiDAR 
sensor for the first time, and a self-developed multi-camera system for 
mobile photogrammetry (MultiCam). The idea of the multi-camera 
system is to provide a solution to compensate for the individual hand- 
held camera in order to achieve a successful mobile type of data 
acquisition. Among the four techniques, three sensors are based on 
active LiDAR sensors and one is based on passive sensors. All devices are 
compared with each other based on the tree detection rate, the accuracy 
of DBH measurements and the time needed for data acquisition. 

2. Methodology 

2.1. Test sites 

The test sites are located in the middle of Slovakia within the 
Kremnica Mountains. Eight research plots with 25 × 25 m dimensions 
were established (Fig. 1). 

Fig. 1. The overview of all test sites with positions of individual trees (points – tree species based) and borders of research plots (white line) is on the left. On the top 
right is a position of plots within Slovakia. On the bottom right is a composition of test sites and a photograph from the research plot H. 
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The number of trees varied from 26 to 54 across test sites (all trees 
considered) with dominant tree species European beech (Fagus sylvatica 
L.) and Norway spruce (Picea abies (L.) H. Karst.). In total, there are 301 
trees and 268 trees have a diameter greater than 7 cm. The mean DBH 
varied from 21.3 cm to 31.4 cm across research plots (Table 1). The 
mean DBH of all trees was 25.0 cm. 

2.2. Conventional in-situ measurements 

Trees within each test site were measured by total station Topcon 
GPT3000M, and perimeters of trees were measured by measuring tape. 
Firstly, two orientation points and the first position of the total station, 
representing the first corner of the research plot were built up. The 
points were measured using the GNSS receiver Topcon Hiper SR com-
bined with the total station Topcon 9000. The corners of the remaining 
research plots represent the corners of the grid with dimensions 25 × 25 
m. They were calculated using coordinate increments of 25 m in the 
directions of the X and Y axes based on the first total station position, 
staked out by the total station, and permanently stabilised. The data set 
was collected with the aim to reach the highest allowed coordinate and 
elevation errors at the level of 0.02 m, using the corner points as a base 
for calculation of other consequential objects-representing points. 

Afterwards, the position and perimeters of trees and the position of 
targets were measured for georeferencing purposes. All data were 
collected from one total station position in the middle of the plots, and 
two corner points were used as orientation points. The position for the 
machine was chosen so that all trees could be seen from one place (it was 
possible in most cases). The six targets oriented to the plot centre were 
evenly distributed in the plots, and their polar coordinates were 
measured in a non-prism operation mode. The polar coordinates of the 
trees at the height of 1.3 m were measured by length offset of the spatial 
polar method. According to the perimeter of trees, the lengths were 
adjusted by the radius of a particular individual during office processing. 
All polar coordinates were transferred to Cartesian coordinates after 

that. 

2.3. Data acquisition and pre-processing 

In the experiment, we used four devices: TLS, PLShh, Apple iPad Pro 
2020 with LiDAR sensor (iPad), and a prototype of a multi-camera 
system (MultiCam). Two main distinguishing parameters are data 
acquisition approach, i.e., static (TLS) and mobile (PLShh, iPad, Multi-
Cam), and the type of sensor used, i.e., active (TLS, PLShh, iPad) and 
passive (MultiCam). 

We have approached data acquisition paths (Fig. 2) and pre- 
processing workflows differently based on the device properties and 
capabilities. However, for the same device, the workflow was the same 
across all research plots, and the processing to final tree positions and 
DBH estimation was also similar for all point clouds. 

2.3.1. Terrestrial laser scanning 
In the experiment, we used a Faro Focus s70 laser scanner (FARO 

Technologies, Inc., Florida, USA). It has a range from 0.5 to 70 m. The 
accuracy is ±2 mm on 10 m or ±3.5 mm on 25 m. We have used the 
resolution (point spacing) of 6.14 mm/10 m. One scan took 2 min and 
24 s (2 kpt/sec). The advantages of the scanner, important for forestry 
use, are small dimensions (230 × 183 × 103 mm) and low weight (4.2 kg 
including battery). Since the scanner is a shift-based type of scanner, the 
scanning time is quite fast and at the same time with a high number of 
captured points. 

A multi-scan approach was used to scan all research plots. Eight 
positions were placed on the border or near the border of the research 
plot and one in the centre of the research plot. The positions on the 
border were placed near the corners and near the middle of the plot side. 
The placement was based on the condition of each plot with regards to 
achieving the lowest occlusions (Fig. 2). 

Plastic spheres were placed in the research plots for the purpose of 
the individual scan merging. Within each plot, twelve spheres were 
placed inside of the plot. With such a number of spheres and altogether 
nine scan positions, it was secured that more than four spheres were seen 
from each scanning position. Merging and georeferencing of the point 
clouds were done in Faro Scene software (ver. 2020.0.6) using the 
default workflow. We have used artificial black and white targets on tree 
trunks to georeference all merged point clouds to the System of the 
Unified Trigonometrical Cadastral Network (S-JTSK, EPSG:5514). 

2.3.2. Hand-held personal laser scanning 
The data acquisition by PLShh was performed using a GeoSLAM 

Horizon scanner (GeoSLAM Ltd., Nottingham, UK). It has a collection 
rate of 300,000 points per second, an accuracy of 1–3 cm and a range of 
100 m. Before the scanning, it was necessary to place plastic spheres for 

Table 1 
Range and mean of diameter at breast height across test sites with number of 
trees.  

Plot DBH range (cm) DBH avg. (cm) No. of trees Density (trees/ha) 

A 3.3–63.3  22.2 41 656 
B 3.1–57.7  25.1 36 576 
C 4.7–68.6  27.7 32 512 
D 5.1–71.7  30.1 26 416 
E 3.9–59.7  26.3 34 544 
F 7.4–74.3  31.4 28 448 
G 4.7–55.9  21.3 50 800 
H 3.8–54.8  22.2 54 864  

Fig. 2. Data acquisition positions (cross) and paths (black line) of all used devices on an example of plot A. Green circles represent tree positions, and their size is 
proportional to the diameter measured in the field. Paths of a, b and d are actual paths derived from devices. In the case of c, the path is illustration of the actual 
scanning path. 
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the subsequent georeferencing of the point cloud. It was not possible to 
use markers placed on trunks since they were not adequately visible due 
to the noise. The spheres were placed at the four corners of each plot and 
scanning always started in the upper right corner and proceeded along 
the lines at about 5 m intervals with a subsequent cross pass with a di-
agonal return to the starting point (Fig. 2b). This measurement method 
was chosen in order to obtain a higher density of points. The data 
acquisition in one plot, including the placement of reference spheres, did 
not exceed 10 min. 

GeoSLAM Hub software (ver. 5.3.1) was used for post-processing of 
scanned data, and subsequently, point clouds from each surface were 
georeferenced into the JTSK system in GeoSLAM Draw software (ver. 
3.1). During processing in GeoSLAM HUb, we used default parameters 
and workflow. 

2.3.3. iPad pro scanning 
The third device used for scanning the study sites was a 4th gener-

ation iPad Pro 2020 tablet (Apple Inc. San Francisco, USA). This is the 

generation that is equipped with an Apple LiDAR sensor able to scan the 
environment. Based on the information that Apple has not officially 
announced, the sensor is a direct time-of-flight custom-designed LiDAR 
scanner that also uses a camera and motion sensor to measure depth. 
The sensor is able to scan up to 5 m. We have used a 3d Scanner App 
(Laan Labs, New York, USA). The app also provides the possibility to 
colourise and export mesh and point clouds. 

Since the range of the scanner is 5 m, we have used a different 
approach of data acquisition as with other mobile devices (PLShh, Mul-
tiCam). The plots were divided into three segments, and the path started 
in the first segment, and the operator walked around each tree in 
sequence. And when all trees were scanned, the path continued to the 
following segment (Fig. 2c). In the iPad measurement, the operator 
needed to carefully walk around trees and avoid rescanning already 
scanned trees. In cases where rescanning of already scanned trees was 
done, the reconstruction of such trees got worse. In some cases where 
trees were very near each other, it was necessary to scan them together. 

During pre-processing of point clouds, we have found out that it was 

Fig. 3. The scheme of the multi-camera system. Cameras are connected directly to Triggerbox, which is powered by a powerbank and controlled by an interval-
ometer. Below are examples of images from each camera from plot A from the same position during the mobile imagery. 

Fig. 4. Examples of point clouds from all devices in Plot B in the side view (top) and 5 cm cross-section at DBH height (below), i.e., 1.275–1.325 cm above 
the ground. 
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not possible to use markers that were placed on tree trunks for geore-
ferencing. Due to this fact, resulting point clouds were aligned with 
point clouds from TLS in CloudCompare using Iterative Closest Point 
(ICP) algorithm. It was necessary to georeference point clouds to be able 
to compare them with reference data. 

2.3.4. Multi-camera mobile photogrammetry 
Data acquisition by mobile photogrammetry was done by the multi- 

camera prototype (MultiCam) constructed by authors. The MultiCam 
consists of four cameras placed on the aluminium profile. We have used 
Sony a6300 cameras with Sony 10–18 mm F4 OSS lens (Sony Corp., 
Tokyo, Japan). Two middle cameras were facing in the walking direc-
tion, and two cameras on edge have been shifted to the side (Fig. 3). The 
overlap of at least 60% on 3 m was ensured between edge and middle 
camera pairs. The overlap was checked before each plot imagery. 

We have controlled the imagery capturing by TriggerBox (Esper Ltd., 
Nottingham, United Kingdom). This device is a multi-camera shutter 
controller which can control up to six cameras at once. The synchroni-
sation of the shutter for all cameras is secured by very low delay 
(0.000002 s). The TriggerBox was powered by a powerbank (5,000 
mAH), and the shutter was controlled by an intervalometer. 

The whole MultiCam system weighs 4.1 kg. It consists of four 

cameras with lenses (2.5 kg), rig (0.9 kg), TriggerBox with cables (0.45 
kg), intervalometer (0.12 kg) and powerbank (0.1 kg). The price is 
approximately 7,200 euros, where 6,800 euros is for cameras with 
lenses. 

The image capturing was set to one image per second for each 
camera simultaneously. The path of data acquisition consists of six 
strips. The distance between strips was approximately 5 m. The Multi-
Cam was facing in the walking direction. On turns, the walking speed 
was slowed down to ensure high overlap. The number of images ranged 
through plots from 1,616 to 1,916 (median = 1,850) with all four 
cameras considered. The number of positions per plot ranged from 404 
to 479 (median = 462.5). 

The camera settings were adjusted accordingly to the light condi-
tions. Since the mobile approach for data acquisition was used in this 
experiment, the shutter speed was set to 1/320 s. The ISO was set to 
3200 and aperture to 7.1. 

Processing of images to georeferenced point clouds was done using 
Agisoft Metashape (Agisoft LLC, Saint Petersburg, Russia). Firstly, we 
calibrated the camera using a chessboard screen and the calibration 
module within the Agisoft Metashape. We have captured images from 
multiple angles following the calibration protocol from Agisoft docu-
mentation. The calibration file was then used within the alignment 

Fig. 5. Tree detection rate of all devices used across eights plots.  

Fig. 6. Conventional and point cloud based methods for DBH measurement, according to each device used, with its regression line and r squared.  
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process. The images were aligned with “High quality”, which is the 
original resolution of images. We have not used any preselection, which 
means each image was compared to each image in the dataset. After 
alignment, we manually searched for markers that were placed on 
trunks. Markers were used to georeference the tie point cloud to S-JTSK 
system. On each plot, at least four markers were found. Next step, the 
densification of tie points was performed with medium quality. Gener-
ated point clouds were exported for tree detection and DBH estimation. 

The examples of point clouds with their cross-sections at 1.3 m are 
shown in Fig. 4. Differences in the point-cloud data quality can be 
clearly seen from the cross-section sub-figures, where the TLS data has 
the highest level of data accuracy, iPad also provide data with little 
noise, and MultiCam and PLShh contain clear noise. 

2.4. Tree detection and DBH estimation 

The point cloud data from stationary TLS and mobile PLShh, iPad and 
MultiCam were processed through the same processing chain as 
described in (Liang et al., 2018b). 

The TLS, PLShh and MultiCam point clouds were sampled. The point 
closest to the centre of gravity within each 1 cm voxel was selected. The 
sampling process gives a comparable data set of the original point cloud 
in the sense of the point distribution, where the gravity is a unique point 
that the position vectors relative to this point sum to zero and the point 
closest to the gravity faithfully represents this unique point without 
introducing any additional measurement errors. The original point 
clouds from the iPad were used because of its low resolution. 

The DTM was reconstructed using a morphological filter and linear 
interpolation. Stem points were identified through point-based analyses. 
Point distributions were studied within their immediate neighbourhood, 
where potential stem points have vertical planar structures. Tree stem 
models were built from the recognised stem points as a series of 3D 
cylinders representing the stem growth. The DBH and location of a stem 
were estimated from the cylinder element at the breast height (1.3 m 
above the ground). 

2.5. Data evaluation 

The tree positions and diameter estimation have been calculated for 
point clouds generated by each device for all eight plots. These esti-
mated trees were matched with field data measured by total station and 
measuring tape. For each reference tree, a buffer with a 1 m radius was 
made to help to locate matches. The pairing was done manually in 
ArcGIS for desktop 10.7 (ESRI, California, USA) to ensure the correct-
ness of matches. 

When all pairs were identified, we calculated estimation errors. Er-
rors were calculated by subtracting reference diameter with estimated 
diameter (1). To exclude gross error, we have deleted estimated DBH 
when the relative DBH error exceeded 100% of that particular tree (2). 

DBHerr = DBHes − DBHr . (1)  

rDBHerr = (DBHesÃ⋅DBHerr)*100. (2)  

where DBHerr is a calculated error of estimated DBH, DBHes is a DBH 
estimated from point cloud, DBHr is measured DBH in the field and 

rDBHerr is relative error of estimated DBH. 
Furthermore, bias, relative bias (rBias), root mean square error 

(RMSE), and relative RMSE (rRMSE) were calculated to compare the 
results between devices. 

The tree detection rate was calculated based on correct matches 
between reference and estimated DBH. Falsely detected trees were also 
identified and reported. 

One sample t-Test was used to statistically identify the significance of 
over- or underestimation of DBH by estimation. We have tested calcu-
lated errors of DBH estimation against zero. 

A two-way analysis of variance (ANOVA) was used to identify the 
influence of the device and plot on the DBH estimation accuracy. 

3. Results 

3.1. Tree detection 

The sum of trees with DBH higher than 7 cm is 268 across all test 
sites. The tree detection rate of all trees was as follows: 95.15% (TLS), 
67.91% (PLShh), 77.24% (iPad), 64.18% (MultiCam). 

TLS provided the highest tree detection rate overall. Within each 
plot, the detection rate ranged from 93.5% to 100%, where 100% tree 
detection rate was achieved on two plots. PLShh tree detection rate 
ranged from 55.6% to 74.3%, for iPad, it ranged from 64.5% to 87.5%, 
and for MultiCam, it ranged from 57.1% to 71.9% (Fig. 5, Table A1). 

The highest amount of falsely detected trees was from MultiCam 
point clouds, through which 137 trees were falsely detected from an 
amount of 327 detected trees. The opposite was achieved by the iPad, 
where 0 trees were falsely detected across all plots. Then TLS had 12 and 
PLShh 10 falsely detected trees across all plots. The number of falsely 
detected trees for each plot and device is shown in the Table A2. 

3.2. DBH estimation 

The correlation between the reference and estimated DBH was 
highest when point cloud from TLS was used (r2 = 0.996) and lowest for 
MultiCam (r2 = 0.799) (Fig. 6). DBH estimated from iPad had also 
reached a high correlation similar to TLS (r2 = 0.973). 

The bias and relative bias for all considered trees measured from a 
point cloud of TLS, PLShh, iPad and MultiCam was − 0.98 cm (3.48%), 
4.34 cm (13.11%), − 2.12 cm (7.35%) and − 0.78 cm (2.56%) respec-
tively (Table 2). The range across plots was − 1.43 cm to − 0.7 cm, 2.58 
cm to 6.00 cm, − 2.59 cm to − 1.79 and − 5.04 cm to 2.53 cm respectively 
(Tables A3 and A4). 

The DBH estimated from TLS, iPad and MultiCam underestimated 
the conventional DBH measurements. For TLS and iPad, the underesti-
mation was statistically significant. In the case of PLShh, the DBH is 
significantly overestimated (Fig. 7). The significance of over- and un-
derestimation was tested by One-Sample t-Test. 

When all trees from eight plots were used to calculate RMSE and 
rRMSE, the highest accuracy was achieved by TLS with RMSE 1.45 cm 
and rRSME 5.18%. The least accurate results were achieved by Multi-
Cam, where RMSE was 6.98 cm, and rRMSE was 22.86% (Table 2). 
When results are grouped by plots, TLS achieved the most accurate re-
sults across all plots with RMSE ranging from 1 cm to 2 cm and rRMSE 

Table 2 
Results of tree attribute estimation (when all trees across eight plots were considered), i.e., root mean square error and bias in both absolute and relative values, tree 
detection rate (TDR), false tree detection (FTD) for devices used across all eight plots. Then we report data acquisition time per plot, the weight of the devices with all 
necessary accessories and approximate price (sources: echosurveying.com and amazon.com).   

RMSE (cm) rRMSE (%) Bias (cm) rBias (%) TDR (%) FTD (No.) Time (min) Weight (kg) Approximate Price $ 

TLS  1.45  5.18 − 0.98  3.48  95.15 12 40  6.2 20,970 
PLShh  6.26  18.88 4.34  13.11  67.91 10 10  3.8 30,350 
iPad  3.14  10.89 − 2.12  7.35  77.24 0 15  0.5 799 
MultiCam  6.98  22.86 − 0.78  2.56  64.18 137 8  4.1 7,200  
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from 3.7% to 6.4%. Regarding the least accurate results, the MultiCam 
has achieved it on six plots and PLShh on two plots (B and G). The range 
was 5.3 cm to 14.3 cm (18.8–38.2%) and 4.8 cm to 8.8 cm 
(13.1–24.9%), respectively. The iPad achieved RMSE 3.14 cm and 
rRMSE 10.89% when all trees were considered. The RMSE and rRMSE 
for all used devices for each plot are shown in Tables A5 and A6. 

Two-way ANOVA was used to test the significant influence of de-
vices, plots and their interaction on the accuracy of DBH estimation. The 
ANOVA indicates a significant impact of devices, plots and their in-
teractions (Table A7). We have used the Tukey post hoc test to identify 
which devices, plots and interactions are significantly different from 
each other. When only devices were compared, only the difference 

between TLS and MultiCam was not statistically significant. When plots 
were compared, only the difference between Plot D and B was statisti-
cally significant. To compare interactions 496 pairs were made of those 
154 were statistically significantly different from each other and 145 of 
them were pairs that contained PLShh. This difference can be clearly seen 
in Fig. 8. The remaining pairs that were significantly different were pairs 
of MultiCam plot B with all iPad plots. 

3.3. DBH thresholds 

Next, we have evaluated trees with DBH higher than 10 cm and 20 
cm. The hypothesis is that the results for such trees are going to be more 

Fig. 7. Boxplots of absolute errors (cm), where boxplots correspond to the 25th and 75th percentiles and whiskers are 1.5 * interquartile range. The line inside the 
boxplots corresponds to the median. Dots represent outliers. 

Fig. 8. Boxplots of absolute errors (cm). boxplots correspond to the 25th and 75th percentiles and whiskers are 1.5 * interquartile range. The line inside the boxplots 
corresponds to the median. 

Fig. 9. The changes of tree detection rate (left) and rRMSE (right) for three DBH thresholds (7 cm, 10 cm and 20 cm) grouped by used devices.  
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accurate with a higher tree detection rate and the larger the tree size, the 
higher possibility is the correct detection/modelling. Across the plots, 
301 trees were measured by conventional methods with all DBH sizes 
considered, 268 trees (89%) with DBH higher than 7 cm, 229 (76%) with 
>10 cm and 153 (51%) with >20 cm. The accuracy (rRMSE) and tree 
detection rate increased significantly and linearly for all devices when 
the threshold of DBH was changed to 10 cm and then to 20 cm (Fig. 9, 
Table A8). 

4. Discussion 

4.1. The overall evaluation on the extracted tree parameters 

Results showed that DBH estimation from TLS point clouds is 

achieving the most accurate results together with the highest tree 
detection rate across all test sites and overall when compared to the 
other three mobile devices (Fig. 10). The reliable accuracy achieved by 
iPad Pro across all sites is showing a high potential for future applica-
tions, especially when other high-quality sensors and options of smart 
devices will be used. On the other hand, PLShh and MultiCam data have 
issues such as a high amount of noise and inaccurate alignments, results 
typically have lower accuracy. 

The most visible advantage of TLS and PLShh is the long-range of the 
sensors. It is usually tens of meters and with scanners that we have used 
it was 70 m for TLS and 100 m for PLShh. Such range is sufficient for tree 
height measurements (Jurjević et al., 2020; Wang et al., 2019) or crown 
reconstruction. This is not feasible with iPad or MultiCam. The range of 
the iPad is 5 m. The MultiCam system is based on passive sensor 

Fig. 10. Scatter plot visualising tree detection rate and rRMSE grouped by used devices. Each device has eight filled points (representing test sites) with one data 
ellipse and one crossed circle which represents an overall tree detection rate and rRMSE of trees with DBH larger than 7 cm. 

Fig. 11. The point clouds of two individual trees from PLShh (left) and TLS (right). A top view of 10 cm cross-sections at the breast height in both datasets is also 
illustrated in the middle. 
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(camera). The range is based on the field of view of the camera and only 
objects captured at least from two positions are going to be recon-
structed. Furthermore, the far objects are going to be reconstructed with 
lower detail than those close to the camera, since the ground sample 
distance (GSD) will be bigger. The example of point clouds from all 
devices of plot A are shown in Video 1. 

Video 1.  

4.2. Hand-held personal laser scanning 

Among published studies, the range of tree detection rate was 
57–100% (Balenović et al., 2021). The highest rate (100%) tree detec-
tion rate for trees over 10 cm of DBH was reported by (Bauwens et al., 
2016) over ten plots (331 trees) with different conditions. (Chen et al., 
2019) achieved 90.9% tree detection rate for trees over 5 cm and with 
the same threshold (>5cm), authors (Gollob et al., 2020) achieved a tree 
detection rate higher than 95% within the majority of 20 plots. On the 
other hand, some authors achieved worse results. For example (Del 
Perugia et al., 2019) used three different data collection approaches, and 
with the one where the distance between strips was 15 m, the tree 
detection rate was 57%, but when the distance was decreased to 10 m, 
the tree detection rate was significantly higher (94%). 

Based on these results, we assumed that the point cloud would be 
denser and the issue of occlusion would be significantly decreased if we 
would have use the distance between lines approximately 5 m and we 
would have also add perpendicular line paths. But our results rejected 
this hypothesis. The tree detection rate ranged from 56% to 75%. We 
assume that this approach brought a higher amount of data to be pro-
cessed and aligned, which caused more geometric discrepancies. Within 
all plots, the trunks are not aligned precisely, and many trunks are 
misaligned themselves (Fig. 11). The problem of the forest environment 
is that there is an only small number of objects with clearly defined 
edges that could improve the alignment of the applied SLAM algorithm 
in the GeoSLAM. According to our results, the chosen trajectory with 
cross repetition tended to worsen rather than improve the SLAM results. 

Although the PLShh method is promising in forestry, finding the 
optimal trajectory for data collection will require considerable effort. It 
is not possible to determine a single procedure for all forest types. Young 
forest stands with smaller DBH, and higher density will require different 
data collection than older stands with higher DBH. 

When TLS was compared with PLShh, (Gollob et al., 2020) achieved 
higher tree detection by PLShh. This can be caused by the relatively low 
number of TLS scan positions (four with one in the centre). A similar 
comparison was done by (Ryding et al., 2015) where 54 trees were 
detected by TLS and 45 by PLShh. (Cabo et al., 2018) reported 100% 
agreement between TLS and PLShh, where both devices detected 271 
trees across two plots. 

Based on the review paper of (Balenović et al., 2021), the rRMSE of 
DBH estimation using PLShh varied from 3.5% (Hyyppä et al., 2020) to 
23% (Ryding et al., 2015). The accuracy of DBH estimation achieved by 
us was from 13% to 25% and 18.9% overall. The accuracy increased 
significantly when the threshold of consideration was changed to 10 cm 

and 20 cm as an opposite of 7 cm. Overall it was changed to 18.3% and 
15.7%, respectively. (Ryding et al., 2015) achieved 23% rRMSE when all 
trees were considered and 9% when only trees with DBH higher than 10 
cm were considered. Furthermore, they also calculate rRMSE for trees 
smaller than 10 cm DBH and the rRMSE was 46%. 

Our results also confirm the significant influence of DBH threshold of 
considered trees. The tree detection rate and accuracy of DBH estimation 
increased significantly when we have considered trees with DBH > 10 
cm and then only those with >20 cm. This is clearly raising the 
important issue of where the threshold should be and how it will in-
fluence whole forest stand results. 

4.3. Smart devices with ToF 

The advantages of using smart devices such as smartphones or tablets 
is the easy manipulation (weight and size) and also familiarity with such 
devices within a majority of the population. Furthermore, in future, 
when additional sensors or functions of such devices are going to be 
explored and used for forestry applications, the employment will be 
even more reasonable. For example, the usage of GNSS data from 
smartphones for positioning within forest environment (Tomaštík et al., 
2017). In recent years studies focused mainly on two paths. Firstly, the 
“Project Tango” where developers mainly focused on augmented reality 
applications. To be able to scan the environment, devices with infrared 
depth sensors were needed. For example, Lenovo Phab 2 Pro phablet. 
Authors (Fan et al., 2018; Hyyppä et al., 2018; Tomaštík et al., 2017) 
explored the application for the tree parameters estimation. The accu-
racy (rRMSE) achieved for DBH estimation within plots varied from 
6.8% to 8.8% (Tomaštík et al., 2017) and from 2% to 11.1% (Fan et al., 
2018). The results achieved within the presented study ranged from 
8.6% to 12.6%. These results are similar and slightly worse than the 
previous reported studies. However, the main difference between the 
iPad Pro scanning and Google Tango approach is that Google Tango has 
implemented the SLAM algorithm with the “loop closure” detection, 
which improves the trajectory accuracy using the alignment of multiple- 
times scanned features. This algorithm is helping to localise the device 
without using a GNSS device or sensor. 

The disadvantage when we have used the iPad to scan the plots was 
the removal of already scanned areas due to the lack of SLAM-like al-
gorithm. We needed to always check whether we are far enough from 
already scanned trees to avoid rescanning them from faraway positions, 
which would lead to worse accuracy of such trees. Since the range is 5 m 
it was possible to avoid it in the majority of cases. But for more dense 
plots this can cause issues during scanning and will lead to worse ac-
curacy. We believe that the implementation of the SLAM algorithm will 
help to eliminate such issues. 

Besides Google Tango, Microsoft Kinect is another similar alterna-
tive. (McGlade et al., 2020) has conducted an experiment within an 
urban park with larger trees (mean DBH 73.4 cm). The data acquisition 
focused on individual trees, and it was static from a tripod with a 
different distance from the trunk (1–3 m). The RMSE ranged from 6.8 cm 
to 16.9 cm. What is approximately 9.2–23.0% of rRMSE (the average 
DBH was 73.4 cm). 

4.4. Multi-camera photogrammetry 

Few studies have been published which used more than one camera 
at once to conduct a photogrammetry image collection of forest stands. 
Moreover, we believe only (Forsman et al., 2016a) has dealt with more 
than two cameras at once. They used a camera rig with five cameras. 
Since the two cameras have been found to have insufficient optical 
stabilisation they were used just partially. Altogether 25 research plots 
with a 20 m radius were used. On these plots, images from the centre 
were taken from 12 positions. It was possible to sufficiently reconstruct 
point clouds on six plots for the DBH estimation and evaluation. The 
relative root mean square error varied from 12.4% to 60.5% within six 
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plots. The range of the presented study using MultiCam is 14.8–38.2%. 
The study of (Forsman et al., 2016a) used a multi-camera rig, but the 
data acquisition was static and only from the centre of a plot by three 
cameras and partially with two other cameras. 

In our experiment, we have used mobile photogrammetry. In the 
majority of published papers on the subject of using terrestrial photo-
grammetry for measuring DBH is a static approach prefered or the so- 
called stop-and-go method. With this approach, the operator is taking 
images only when it is not moving with the camera on a tripod or in 
hand. When mobile is compared to a stop-and-go (static) approach, the 
advantage is faster data acquisition. In Mokroš et al. (2018), the average 
time needed to conduct mobile photogrammetry was slightly above 13 
min, and by the stop-and-go method, it was 31 min on average for the 
same plot (35 × 35 m). 

On the other hand, the mobile photogrammetry is more prone to fail 
to align images and generate sufficient and accurate point clouds. The 
operator is continuously moving and taking images. It is essential to 
secure a sufficient overlap between images. From our experience, the 
trickiest part of such data acquisition is the turning points outside the 
plot where the operator needs to turn back to the plot and do another 
line strip. In these places, the alignment photogrammetry process is 
failing most. Our hypothesis was that using multiple cameras in a row 
will greatly help to keep the overlap during the walking but also on those 
turning points. This hypothesis seems correct. We have aligned all im-
ages on turning points or in other parts of imagery paths. We have not 
needed to repeat data acquisition. 

The challenge of mobile photogrammetry is the camera settings. 
Since the operator is constantly moving during imagery, the shutter 
speed must be quite high to avoid blurry images. When the shutter speed 
is high in a fairly dark environment, as the dense forest during vegeta-
tion season is, the ISO and aperture must be set appropriately to achieve 
bright enough images. In our case, we have used 1/320 s shutter speed, 
3200 ISO and 7.1 aperture. The ideal combination for such data acqui-
sition should be explored. If we change the shutter speed to faster values, 
the ISO and aperture should be adjusted, but we do not have an answer 
yet which settings will bring results with less noise and with higher 
accuracy. Regarding the stop-and-go method, the shutter speed can be 
slower especially when a tripod is used. This is the main advantage of the 
static approach versus the mobile one. 

Overall terrestrial photogrammetry can provide high accuracy of 
DBH measurements. The RMSE can achieve sub-centimetre accuracy. 
Especially in cases where a stop-and-go approach is used and only one 
tree at a time is photographed. In Mokroš et al. (2020), authors used 
such an approach, and the rRMSE has not exceeded 1% in all 40 trees, 
and they were able to measure the annual trunk increment of mature 
trees. When authors focus on multiple trees at plots using a single 
camera, the rRMSE can vary from 2% (Mikita et al., 2016) to 61% 
(Forsman et al., 2016a). Results are highly dependent on the data 
acquisition approach, camera and lens, camera settings, forest stand 
parameters and so on. 

In the present study, we have achieved an rRMSE range 14–38%. We 
believe that the results could be improved. In future experiments, we 
will focus on the different setup of cameras on the rig, higher number of 
cameras, composition, or orientation. Furthermore, the influence of 
different camera settings should be tested. 

5. Conclusion 

We presented here a comparison of well-known terrestrial laser 
scanning (TLS), state-of-the-art hand-held personal laser scanning 
(PLShh), laser scanning based on iPad Pro (hand-held) and mobile 
photogrammetry with a self-constructed multi-camera system (Multi-
Cam). The comparison was based on the performance within forest 
stands focusing on tree detection, DBH estimation and overall perfor-
mance. Altogether, eight plots (25 × 25 m), with 301 trees (602 trees per 
ha), were established. Data acquisition of one plot lasted 40 min (TLS), 

10 min (PLShh), 15 min (iPad) and 8 min (MultiCam). TLS achieved tree 
detection above 90% for all eight plots. None of the other used devices 
reached a 90% tree detection rate. The highest range among them was 
when iPad was used 64.5% 87.5%. The tree detection rate range of PLShh 
and MultiCam was 55.6–74.3% and 57.1–71.9%, respectively. Similar 
results were achieved when the accuracy of DBH estimation was 
compared. TLS had RMSE under 2 cm for all plots. None of the other 
used devices reached such accuracy. Nevertheless, iPad performed the 
closest results, 2.6–3.4 cm. 

Each device provides certain benefits. The advantage of TLS and 
PLShh is the coverage of the upper parts of trees. Therefore, also tree 
height or crown parameters are possible to measure directly from point 
clouds. On the other hand, both devices are significantly more expensive 
than the iPad or MultiCam. Thus, if the goal is to measure DBH, these 
devices could be the suitable alternative. However, further experiments 
have to be done within forests with different levels of complexity. 
Furthermore, experiments focusing on achieving 100% tree detection 
rate on the plot, and in the case of MultiCam, the focus should be on 
decreasing point cloud noise. Only iPad Pro is a solution that provides 
point cloud right away in the field. This advantage is highly usable for 
forestry practice, where operators can have results right away in the 
field. On the other hand, the data acquisition must be done very care-
fully to avoid rescanning already scanned parts, which makes it less 
practical in the field, especially in more complex forests. Potentially it 
might be solved by SLAM algorithm implementation. 

Overall, TLS provided the most accurate and reliable results. 
Nevertheless, the performance of iPad Pro with the LiDAR sensor had 
the DBH estimation accuracy and tree detection rate closest to the TLS 
results when PLShh and MultiCam are considered for comparison. 
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Appendix A 

Tables A1–A8. 

Table A1 
Tree detection rate (%) of all devices used for each plot are reported.   

A B C D E F G H 

TLS 100  90.6  93.5 95.8  93.5 100  95.2  93.5 
PLShh 74.3  56.2  74.2 75  67.7 55.6  71.4  67.4 
iPad 80  81.2  77.4 87.5  64.5 74.1  78.6  76.1 
MultiCam 68.6  71.9  67.7 58.3  61.3 63  57.1  65.2  
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Table A2 
Falsely detected trees (n) of all devices used for each plot are reported.   

A B C D E F G H 

TLS 2 3 2 3 1 0 1 0 
PLShh 3 1 0 1 0 3 2 0 
iPad 0 0 0 0 0 0 0 0 
MultiCam 25 12 18 16 19 14 12 21  

Table A3 
BIAS (cm) of all devices used for each plot are reported.   

A B C D E F G H 

TLS − 0.92 − 0.96 − 0.95 − 1.43 − 1.14 − 1.15 − 0.86 − 0.7 
PLShh 5.55 4.59 3.5 2.82 2.58 4.85 3.97 6 
iPad − 2.59 − 2.6 − 2.17 − 1.79 − 2.15 − 1.8 − 1.95 − 1.87 
MultiCam − 1.62 2.53 − 1.33 − 5.04 − 1.65 − 0.12 1.3 − 1.78  

Table A4 
rBIAS (%) of all devices used for each plot are reported.   

A B C D E F G H 

TLS  3.67  3.37  3.19  4.32  3.85  3.67  3.44  2.67 
PLShh  19.21  12.94  10.03  7.78  7.03  13.33  13.41  18.95 
iPad  9.87  8.87  6.93  5.57  7.07  5.88  7.51  6.79 
MultiCam  6.05  9.9  3.83  13.5  5.1  0.37  4.5  5.9  

Table A5 
RMSE (cm) of all devices used for each plot are reported.   

A B C D E F G H 

TLS  1.3  1.4  1.7 2 1.9  1.5  1.2 1 
PLShh  6.3  8.8  5.2 4.8 5  5.3  5.6 7.5 
iPad  3.4  3.4  3.3 3.3 2.9  2.6  3.2 2.8 
MultiCam  5.1  5.9  4.9 14.3 8.6  7.1  4.3 5.4  

Table A6 
rRMSE (%) of all devices used for each plot are reported.   

A B C D E F G H 

TLS 5 4.9 5.6 6  6.4  4.7  4.7  3.7 
PLShh 21.9 24.9 15 13.1  13.6  14.7  18.8  23.7 
iPad 12.9 11.5 10.5 10.4  9.4  8.6  12.5  10.3 
MultiCam 19.1 23 14 38.2  26.7  21.9  14.8  18.1  

Table A7 
Analysis of variance results.   

term df sumsq meansq statistic p value 

1 Device 3  0.470974  0.156991 99.34317 1.66E− 54 
2 Plot 7  0.024285  0.003469 2.195353 0.032723 
3 Device:Plot 21  0.072798  0.003467 2.193635 0.001581 
4 Residuals 784  1.238951  0.00158 NA NA  

Table A8 
Absolute and relative root mean square error and tree detection rate for used devices across all eight plots for trees with DBH higher than 7 cm, 10 cm and 20 cm are 
reported.   

RMSE (cm) rRMSE (% TDR (%)  

>7 >10 >20 >7 >10 >20 >7 >10 >20 

TLS  1.45  1.51  1.67  5.18  4.86  4.33  95.15  96.07 100 
PLShh  6.26  6.24  6.09  18.88  18.3  15.7  67.91  76.42 92.16 
iPad  3.14  3.21  3.58  10.89  10.5  9.65  77.24  82.97 88.24 
MultiCam  6.98  7.16  8.00  22.86  22.4  21.1  64.18  70.3 78.43  
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